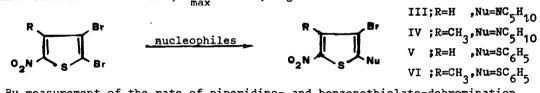
AN UNUSUAL EXAMPLE OF NUCLEOPHILIC SUBSTITUTION WEAKLY ACTIVATED BY A meta-METHYL GROUP

D.SPINELLI, G.CONSIGLIO and A.CORRAO


Institute of Organic Chemistry, Via Archirafi 20, Palermo 90123 Italy

(Received in UK 16 August 1972; accepted for publication 24 August 1972)

A meta-methyl group usually lowers nucleophilic reactivity of a leaving nitro-activated halogen atom due to its electron-repelling effect¹ (factor 2-5), or in special cases by secondary steric effects² (factor 1000).

We now report an example of nucleophilic substitution reactions weakly activated by a *meta*-methyl group.

2,3-Dibromo-5-nitrothiophene (I)³ and 2,3-dibromo-4-methyl-5-nitrothiophene (II) (obtained by mercuration and bromination of 2-nitro-3-methylthiophene,m.p.72°, from light petroleum) react with piperidine and sodium benzenethiolate to give the corresponding piperidyl derivatives (III, m.p.77°, orange from methanol, λ_{max} 428 nm, loge 4.1; IV, m.p.110°, orange from ethanol, λ_{max} 425 nm, loge 4.1) and sulphides (V, m.p.112°, yellow from ethanol, λ_{max} 386 nm, loge 3.9; VI,m.p.99°, yellow from methanol/dioxan, λ_{max} 388 nm, loge 4.0).

By measurement of the rate of piperidino- and benzenethiolate-debromination, we have observed that, within the explored temperature range, $k_I/k_{II} \approx 0.6 \pm 0.8$ (see Table). The expected value should be at least 2 - 5,[†] which is the value previously reported by us^{1f} in 5-membered heterocycles and known in many other cases in derivatives of 6-membered rings (benzene, ^{lb} pyridine, ^{lc} pyrimidine, ^{ld} quinoline, ^{le} etc.).

This peculiar behaviour can be related to the effect by the 4-methyl group which increases the Reinheimer and Bunnett effect⁵ of the 3-bromine on the activated 2-bromine.

[†] If the 3-bromine could exert a buttressing effect on the methyl group (making evident interactions between -CH₃ and NO₂) there would be a stronger kinetic effect present (k_I/k_{II} > 10).

TABLE

KINETIC DATA^a AND THERMODYNAMIC PARAMETERS FOR NUCLEOPHILIC SUBSTITUTIONS IN METHANOL

Substrate	Nucleophile	k at 20.00°C	∆H [≠]	∆s [≠]
		(1 mol ⁻¹ sec ⁻¹) ^b	(kcal/mol) ^C	(u.e.) ^C
Id	piperidine	0.765.10-4	13.5	31.3
IId	piperidine	1.08.10-4	13.8	29.5
Ie	sodium benzenethiolate	6.23	12.7	11.6
IIe	sodium benzenethiolate	7.66	11.1	16.4

^a The kinetics were followed spectrophotometrically as previously described.⁴ ^b The rate constants are accurate to within ± 3%.

^c At 20°C, calculated from kinetic data in the range 20-40° and 0-20° respective ly for reactions with piperidine and sodium benzenethiolate.

^d Concentrations of reagents: substrate = $1 \cdot 10^{-3}$ M; piperidine = $2 \cdot 10^{-2}$ M.

^e Concentrations of reagents: substrate = benzenethiol = 2.5.10⁻⁴M; sodium methoxide about 1.10⁻³M.

REFERENCES

¹(a) D.H.McDaniel and H.C.Brown, J.Org.Chem., <u>23</u>, 420(1958); J.Miller, Aromatic Nucleophilic Substitution, p.121, Elsevier, Amsterdam(1968); (b) W.Greizerstein, R.A.Bonelli and J.A.Brieux, J.Am.Chem.Soc., <u>84</u>, 1026(1962); M.Liveris, P.G.Lutz and J.Miller, Ibid., <u>78</u>, 3375(1956); A.M.Porto, L.Altieri, A.J.Castro and J.A. Brieux, J.Chem.Soc.(B), 963(1966); (c) N.B.Chapman, D.K.Chandhury and J.Shorter, Ibid.,1975(1962); (d) N.B.Chapman and C.W.Rees, Ibid., 1190(1954); (e) M.L. Belli, G.Illuminati and G.Marino, Tetrahedron, <u>19</u>, 345(1963); (f) D.Spinelli, G.Guanti and C.Dell'Erba, J.Het.Chem., <u>5</u>, 323(1968); D.Spinelli, G.Consiglio and A.Corrao, J.Chem.Soc. Perkin II, in press.

²B.Capon and N.B.Chapman, J.Chem.Soc., 600(1957).

³W.Steinkopf, H.Jacob and H.Penz, Annalen, <u>512</u>, 136(1934).

⁴D.Spinelli, C.Dell'Erba and G.Guanti, Ann.Chim.Rome, <u>55</u>, 1252, 1260(1965).

⁵J.D.Reinheimer and J.F.Bunnett, J.Am.Chem.Soc., <u>81</u>, 315(1959); R.A.Abramovitch, F.Helmer and M.Liveris, J.Org.Chem., 34, 1730(1969).